

1

Measuring and Evaluating Maintenance Process Using Reliability, Risk, and Test Metrics

Norman F. Schneidewind, Fellow IEEE

IEEE Transactions on Software Engineering, Vol. 25, No. 6, November/December 1999, pp. 768-781.

Computer and Information Sciences and Operations Division
Naval Postgraduate School

Monterey, CA 93943, U.S.A.
Voice: (831) 656-2719
Fax : (831) 656-3407

Email: nschneid@nps.navy.mil

Abstract

 In analyzing the stability of a maintenance process, it is important that it not be treated in isolation
from the reliability and risk of deploying the software that result from applying the process.
Furthermore, we need to consider the efficiency of the test effort that is a part of the process and a
determinate of reliability and risk of deployment. The relationship between product quality and process
capability and maturity has been recognized as a major issue in software engineering based on the
premise that improvements in process will lead to higher quality products. To this end, we have been
investigating an important facet of process capability – stability – as defined and evaluated by trend,
change, and shape metrics, across releases and within a release. Our integration of product and process
measurement serves the dual purpose of using metrics to assess and predict reliability and risk and to
evaluate process stability. We use the NASA Space Shuttle flight software to illustrate our approach.

Index Terms - Maintenance process stability, product and process integration, reliability risk.

INTRODUCTION

Measuring and evaluating the stability of maintenance processes is important because of the

recognized relationship between process quality and product quality [7]. We focus on the important
quality factor reliability. A maintenance process can quickly become unstable because the very act of
installing software changes the environment: pressures operate to modify the environment, the
problem, and the technological solutions. Changes generated by users and the environment and the
consequent need for adapting the software to the changes is unpredictable and cannot be
accommodated without iteration. Programs must be adaptable to change and the resultant change
process must be planned and controlled. According to Lehman, large programs are never completed,
they just continue to evolve [11]. In other words, with software, we are dealing with a moving target.
Maintenance is performed continuously and the stability of the maintenance process has an effect on
product reliability. Therefore, when we analyzed the stability of the NASA Shuttle software
maintenance process, it was important to consider the reliability of the software that the process
produces. Furthermore, we needed to consider the efficiency of the test effort that is a part of the
process and a determinate of reliability. Therefore, we integrated these factors into a unified model,
which allowed us to measure the influence of maintenance actions and test effort on the reliability of
the software. Our hypothesis was that these metrics would exhibit trends and other characteristics over
time that would be indicative of the stability of the process. Our results indicate that this is the case.

2

 We conducted research on the NASA Space Shuttle flight software to investigate a hypothesis of
measuring and evaluating maintenance stability. We used several metrics and applied them across
releases of the software and within releases. The trends and shapes of metric functions over time
provide evidence of whether the software maintenance process is stable. We view stability as the
condition of a process that results in increasing reliability, decreasing risk of deployment, and
increasing test effectiveness. In addition, our focus is on process stability, not code stability. We
explain our criteria for stability; describe metrics, trends, and shapes for judging stability; document
the data that was collected; and show how to apply our approach. Building on our previous work of
defining maintenance stability criteria and developing and applying trend metrics for stability
evaluation [15], in this paper we review related research projects, introduce shape metrics for stability
evaluation, apply our change metric for multiple release stability evaluation, consider the functionality
of the software product in stability evaluation, and interpret the metric results in terms of process
improvements.

Our emphasis in this paper is to propose a unified product and process measurement model for

product evaluation and process stability analysis. The reader should focus on the model principles and
not on the results obtained for the Shuttle. These are used only to illustrate the model concepts. In
general, different numerical results would be obtained for other applications that use this model.

 First, we review related research. Next, the concept of stability is explained and trend and shape
metrics are defined. Then, we define the data and the Shuttle application environment. This is followed
by an analysis of relationships among maintenance, reliability, test effort, and risk, both long term (i.e.,
across releases) and short term (i.e., within a release), as applied to the Shuttle. We conclude with a
discussion of our attempts to relate product metrics to process improvements and to the functionality
and complexity of the software.

RELATED RESEARCH AND PROJECTS

A number of useful related maintenance measurement and process projects have been reported in

the literature. Briand, et al, developed a process to characterize software maintenance projects [3].
They present a qualitative and inductive methodology for performing objective project
characterizations to identify maintenance problems and needs. This methodology aids in determining
causal links between maintenance problems and flaws in the maintenance organization and process.
Although the authors’ have related ineffective maintenance practices to organizational and process
problems, they have not made a linkage to product reliability and process stability.

Gefen and Schneberger developed the hypothesis that maintenance proceeds in three distinct serial

phases: corrective modification, similar to testing; improvement in function within the original
specifications; and the addition of new applications that go beyond the original specifications [5].
Their results from a single large information system, which they studied in great depth, suggested that
software maintenance is a multi-period process. In the Shuttle maintenance process, in contrast, all
three types of maintenance activities are performed concurrently and are accompanied by continuous
testing.

Henry, et al, found a strong correlation between errors corrected per module and the impact of the
software upgrade [6]. This information can be used to rank modules by their upgrade impact during

3

code inspection in order to find and correct these errors before the software enters the expensive test
phase. The authors treat the impact of change but do not relate this impact to process stability.

Khoshgoftarr et al used discriminant analysis in each iteration of their project to predict fault
prone modules in the next iteration [10]. This approach provided an advance indication of reliability
and the risk of implementing the next iteration. This study deals with product reliability but does not
address the issue of process stability.

Pearse and Oman applied a maintenance metrics index to measure the maintainability of C source
code before and after maintenance activities [13]. This technique allowed the project engineers to track
the "health" of the code as it was being maintained. Maintainability is assessed but not in terms of
process stability.

Pigoski and Nelson collected and analyzed metrics on size, trouble reports, change proposals,
staffing, and trouble report and change proposal completion times [14]. A major benefit of this project
was the use of trends to identify the relationship between the productivity of the maintenance
organization and staffing levels. Although productivity was addressed, product reliability and process
stability were not considered.

 Sneed reengineered a client maintenance process to conform to the ANSI/IEEE Standard 1291,

Standard for Software Maintenance [19]. This project is a good example of how a standard can provide
a basic framework for a process and can be tailored to the characteristics of the project environment.
Although applying a standard is an appropriate element of a good process, product reliability and
process stability were not addressed.

 Stark collected and analyzed metrics in the categories of customer satisfaction, cost, and schedule

with the objective of focusing management's attention on improvement areas and tracking
improvements over time [20]. This approach aided management in deciding whether to include
changes in the current release, with possible schedule slippage, or include the changes in the next
release. However, the authors did not relate these metrics to process stability.

Although there are similarities between these projects and our research, our work differs in that we
integrate: 1) maintenance actions, 2) reliability, 3) test effort, and 4) risk to the safety of mission and
crew of deploying the software after maintenance actions, for the purpose of analyzing and evaluating
the stability of the maintenance process.

CONCEPT OF STABILITY

TREND METRICS

To gain insight about the interaction of the maintenance process with product metrics like
reliability, two types of metrics are analyzed: trend and shape. Both types are used to assess and
predict maintenance process stability across (long-term) and within (short-term) releases after the
software is released and maintained. Shape metrics are described in the next section. By
chronologically ordering metric values by release date, we obtain discrete functions in time that can be
analyzed for trends across releases. Similarly, by observing the sequence of metric values as
continuous functions of increasing test time, we can analyze trends within releases. These metrics are

4

defined as empirical and predicted functions that are assigned values based on release date (long term)
or test time (short term). When analyzing trends, we note whether an increasing or decreasing trend is
favorable [15]. For example, an increasing trend in Time to Next Failure and a decreasing trend in
Failures per KLOC would be favorable. Conversely, a decreasing trend in Time to Next Failure and an
increasing trend in Failures per KLOC would be unfavorable. A favorable trend is indicative of
maintenance stability if the functionality of the software has increased with time across releases and
within releases. Increasing functionality is the norm in software projects due to the enhancement that
users demand over time. We impose this condition because if favorable trends are observed, they could
be the result of decreasing functionality rather than having achieved maintenance stability. When
trends in these metrics over time are favorable (e.g., increasing reliability), we conclude that the
maintenance process is stable with respect to the software metric (reliability). Conversely, when the
trends are unfavorable (e.g., decreasing reliability), we conclude that process is unstable. Our research
investigated whether there were relationships among the following factors: 1) maintenance actions, 2)
reliability, and 3) test-effort. We use the following types of trend metrics:

1.Maintenance actions: KLOC Change to the Code (i.e., amount of code changed necessary to add
given functionality);

2. Reliability: Various reliability metrics (e.g., MTTF, Total Failures, Remaining Failures, and Time to
Next Failure); and

3. Test effort: Total Test Time.

Change Metric

 Although looking for a trend on a graph is useful, it is not a precise way of measuring stability,
particularly if the graph has peaks and valleys and the measurements are made at discrete points in
time. Therefore, we developed a Change Metric (CM), which is computed as follows:

1. Note the change in a metric from one release to the next (i.e., release j to release j+1).

2.a. If the change is in the desirable direction (e.g., Failures/KLOC decrease), treat the change in 1 as
positive.

b. If the change is in the undesirable direction (e.g., Failures/KLOC increase), treat the change in 1 as
negative.

3. a. If the change in 1 is an increase, divide it by the value of the metric in release j+1.
 b. If the change in 1 is a decrease, divide it by the value of the metric in release j.

4. Compute the average of the values obtained in 3, taking into account sign. This is the change metric
(CM). The CM is a quantity in the range –1, 1. A positive value indicates stability; a negative value
indicates instability. The numeric value of CM indicates the degree of stability or instability. For
example, .1 would indicate marginal stability and .9 would indicate high stability. Similarly, -. 1 would
indicate marginal instability and -. 9 would indicate high instability. The standard deviation of these
values can also be computed. Note that CM only pertains to stability or instability with respect to the
particular metric that has been evaluated (e.g., Failures/KLOC). The evaluation of stability should be

5

made with respect to a set of metrics and not a single metric. The average of the CM for a set of
metrics can be computed to obtain an overall metric of stability.

SHAPE METRICS

 In addition to trends in metrics, the shapes of metric functions provide indicators of maintenance
stability. We use shape metrics to analyze the stability of an individual release and the trend of these
metrics across releases to analyze long-term stability. The rationale of these metrics is that it is better
to reach important points in the growth of product reliability sooner than later. If we reach these points
late in testing, it is indicative of a process that is late in achieving stability. We use the following types
of shape metrics:

1. Direction and magnitude of the slope of a metric function (e.g., failure rate decreases asymptotically
with total test time). Using failure rate as an example within a release, it is desirable that it rapidly
decrease towards zero with increasing total test time and that it have small values.

2. Percent of total test time at which a metric function changes from unstable (e.g., increasing failure
rate) to stable (e.g., decreasing failure rate) and remains stable. Across releases, it is desirable that the
total test time at which a metric function becomes stable gets progressively smaller.

3. Percent of total test time at which a metric function increases at a maximum rate in a favorable
direction (e.g., failure rate has maximum negative rate of change). Using failure rate as an example, it
is desirable for it to achieve maximum rate of decrease as soon as possible, as a function of total test
time.

4. Test time at which a metric function reaches its maximum value (e.g., test time at which failure rate
reaches its maximum value). Using failure rate as an example, it is desirable for it to reach its
maximum value (i.e., transition from unstable to stable) as soon as possible, as a function of total test
time.

5. Risk: Probability of not meeting reliability and safety goals (e.g., time to next failure should exceed
mission duration), using various shape metrics as indicators of risk. Risk would be low if the
conditions in 1-4 above obtain.

METRICS FOR LONG-TERM ANALYSIS

We use certain metrics only for long-term analysis. As an example, we compute the following
trend metrics over a sequence of releases:

1. Mean Time to Failure (MTTF).

2. Total Failures normalized by KLOC Change to the Code.

3. Total Test Time normalized by KLOC Change to the Code.

4. Remaining Failures normalized by KLOC Change to the Code.

6

5. Time to Next Failure.

METRICS FOR LONG-TERM AND SHORT-TERM ANALYSIS

We use other metrics for both long-term and short-term analysis. As an example, we compute the

following trend (1) and shape (2, 3, 4, and 5) metrics over a sequence of releases and within a given
release:

1. Percent of Total Test Time required for Remaining Failures to reach a specified value.

2. Degree to which Failure Rate asymptotically approaches zero with increasing Total Test Time.

3. Percent of Total Test Time required for Failure Rate to become stable and remain stable.

4. Percent of Total Test Time required for Failure Rate to reach maximum decreasing rate of change
(i.e., slope of the failure rate curve).

5. Maximum Failure Rate and Total Test Time where Failure Rate is maximum.

DATA AND EXAMPLE APPLICATION

We use the Shuttle application to illustrate the concepts. This large maintenance project has been
evolving with increasing functionality since1983 [2]. We use data collected from the developer of the
flight software of the NASA Space Shuttle, as shown in Table 1, which has two parts: 1 and 2.This
table shows Operational Increments (OIs) of the Shuttle: OIA... OIQ, covering the period 1983-1997.
We define an OI as follows: a software system comprised of modules and configured from a series of
builds to meet Shuttle mission functional requirements [16]. In Part 1, for each of the OIs, we show the
Release Date (the date of release by the contractor to NASA), Total Post Delivery Failures, and Failure
Severity (decreasing in severity from “1” to “4”). In Part 2, we show the maintenance change to the
code in KLOC (source language changes and additions) and the total test time of the OI. In addition,
for those OIs with at least two failures, we show the computation of MTTF, Failures/KLOC, and Total
Test Time/KLOC. KLOC is an indicator of maintenance actions, not functionality [8]. Increased
functionality, as measured by the increase in the size of principal functions loaded into mass memory,
has averaged about 2% over the last 10 OIs. Therefore, if a stable process were observed, it could not
be attributed to decreasing functionality. Also to be noted is that the software developer is a CMM
Level 5 organization that has continually improved its process.

Because the flight software is run continuously, around the clock, in simulation, test, or flight,

Total Test Time refers to continuous execution time from the time of release. For OIs where there was
a sufficient sample size (i.e., Total Post Delivery Failures) -- OIA, OIB, OIC, OID, OIE, OIJ, and OIO
-- we predicted software reliability. For these OIs, we show Launch Date, Mission Duration, and
Reliability Prediction date (i.e., the date when we made a prediction). Fortunately, for the safety of the
crew and mission, there have been few post delivery failures. Unfortunately, from the standpoint of
prediction, there is a sparse set of observed failures from which to estimate reliability model
parameters, particularly for recent OIs. Nevertheless, we predict reliability prior to launch date for OIs
with as few as five failures spanning many months of maintenance and testing. In the case of OIE, we

7

predict reliability after launch because no failures had occurred prior to launch to use in the prediction
model. Because of the scarcity of failure data, we made predictions using all severity levels of failure
data. This turns out to be beneficial when making reliability risk assessments using number of
Remaining Failures. For example, rather than specifying that the number of predicted Remaining
Failures must not exceed one severity “1”, the criterion could specify that the prediction not exceed
one failure of any type – a more conservative criterion [16].

As would be expected, the number of pre-delivery failures is much greater than the number of post

delivery failures because the software is not as mature from a reliability standpoint. Thus, a way
around the insufficient sample size of recent OIs for reliability prediction is to use pre-delivery failures
for model fit and then use the fitted model to predict post-delivery failures. However, we are not sure
that this approach is appropriate because the multiple builds in which failures can occur and the test
strategies used to attempt to crash various pieces of code during the pre-delivery process contrast
sharply with the post-delivery environment of testing an integrated OI with operational scenarios.
Nevertheless, we are experimenting with this approach in order to evaluate the prediction accuracy.
The results will be reported in a future paper.

8

Table 1-Part 1: Characteristics of Maintained Software Across Shuttle Releases

Operational
Increment

Release
Date

Launch
Date

Mission
Duration
(Days)

Reliability
Prediction

Date

Total
Post

Delivery
Failures

Failure
Severity

 A

9/1/83

No Flights

12/9/85

6

One 2
Five 3

B

12/12/83

8/30/84

6

8/14/84

10

Two 2
Eight 3

C

6/8/84

4/12/85

7

1/17/85

10

Two 2
Seven 3
One 4

D

10/5/84

11/26/85

7

10/22/85

12

Five 2
Seven 3

E 2/15/85 1/12/86 6

5/11/89 5 One 2
Four 3

 F 12/17/85

2 Two 3

 G

6/5/87

3

One 1
Two 3

 H

10/13/88

3

Two 1
One 3

I

6/29/89

3

Three 3

J

6/18/90

8/2/91 9 7/19/91 7 Seven 3

K 5/2/91

1 One 1

L

6/15/92

3

One 1
One 2
One 3

M 7/15/93

1 One 3

N 7/13/94

1 One 3

O 10/18/95 11/19/96 18 9/26/96 5 One 2
Four 3

P 7/16/96

3 One 2
Two 3

Q 3/5/97

1 One 3

 9

Table 1-Part 2: Characteris tics of Maintained Software Across Shuttle Releases

Operational
Increment

KLOC

Change

Total Test

Time
(Days)

MTTF
(Days)

Total

Failures/KLOC
Change

Total

Test Time/
KLOC

Change
(Days)

 A

8.0

1078

179.7

0.750

 134.8

B

11.4

4096

409.6

0.877

359.3

C

5.9

4060

406.0

1.695

688.1

D

12.2

2307

192.3

0.984

189.1

E

8.8

1873

374.6

0.568

212.8

 F

6.6

412

206.0

0.303

62.4

 G

6.3

3077

1025.7

0.476

488.4

 H

7.0

540

180.0

0.429

77.1

I

12.1

2632

877.3

0.248

217.5

J

29.4

515

73.6

0.238

17.5

K

 21.3

182

8.5

L

34.4

1337

445.7

0.087

38.9

M

 24.0

386

16.1

N

10.4

121

11.6

O

15.3

344

68.8

0.327

22.5

P

7.3

272

90.7

0.411

37.3

Q

11.0

75

6.8

RELATIONSHIPS AMONG MAINTENANCE, RELIABILITY, AND TEST EFFORT

 METRICS FOR LONG-TERM ANALYSIS

We want our maintenance effort to result in increasing reliability of software over a sequence of
releases. A graph of this relationship over calendar time and the accompanying CM calculations indicate
whether the long-term maintenance effort has been successful as it relates to reliability. In order to
measure whether this is the case, we use both predicted and actual values of metrics. We predict reliability
in advance of deploying the software. If the predictions are favorable, we have confidence that the risk is

 10

acceptable to deploy the software. If the predictions are unfavorable, we may decide to delay deployment
and perform additional inspection and testing. Another reason for making predictions is to assess whether
the maintenance process is effective in improving reliability and to do it sufficiently early during
maintenance to improve the maintenance process. In addition to making predictions, we collected and
analyzed historical reliability data. These data show in retrospect whether maintenance actions were
successful in increasing reliability. In addition, the test effort should not be disproportionate to the amount
of code that is changed and to the reliability that is achieved as a result of maintenance actions.

Mean Time to Failure

We want Mean Time to Failure (MTTF), as computed by equation (1), to show an increasing trend
across releases, indicating increasing reliability.

Mean Time to Failure = Total Test Time/Total Number of Failures During Test (1)

Total Failures

Similarly, we want Total Failures (and faults), normalized by KLOC Change in Code, as computed
by equation (2), to show a decreasing trend across releases, indicating that reliability is increasing with
respect to code changes.

Total Failures/KLOC = Total Number of Failures During Test/KLOC Change in Code on the OI (2)

 We plot Equations (1) and (2) in Figure 1 and Figure 2, respectively, against Release Time of OI.
This is the number of months since the release of the OI, using "0" as the release time of OIA. We
identify the OIs at the bottom of the plots. Both of these plots use actual values (i.e., historical data). The
CM value for equation (1) is -0.060 indicating small instability with respect to MTTF and 0.087 for
equation (2) indicating small stability with respect to normalized Total Failures. The corresponding
standard deviations are 0.541 and 0.442. Large variability in CM is the case in this application due to the
large variability in functionality across releases. Furthermore, it is not our objective to judge the process
that is used in this example. Rather, our purpose in showing these and subsequent values of CM is to
illustrate our model. We use these plots and the CM to assess the long-term stability of the maintenance
process. We show example computations of CM for equations (1) and (2) in Table 2.

Table 2: Example Computations of Change Metric (CM)
Operational
Increment

MTTF
(Days)

Relative
Change

Total
Failures/KLOC

Relative
Change

A 179.7 0.750
B 409.6 0.562 0.877 -0.145
C 406.0 -0.007 1.695 -0.483
D 192.3 -0.527 0.984 0.419
E 374.6 0.487 0.568 0.423
J 73.6 -0.805 0.238 0.581
O 68.8 -0.068 0.330 -0.272
 CM -0.060 CM 0.087

 11

Total Test Time

We want Total Test Time, normalized by KLOC Change in Code, as computed by equation (3), to
show a decreasing trend across releases, indicating that test effort is decreasing with respect to code
changes.

Total Test Time/KLOC = Total Test Time/KLOC Change in Code on the OI (3)

We plot Equation (3) in Figure 3 against Release Time of OI, using actual values. The CM value for
this plot is 0.116, with a standard deviation of 0.626, indicating stability with respect to efficiency of test
effort. We use this plot and the CM to assess whether testing is efficient with respect to the amount of
code that has been changed.

Reliability Predictions

Total Failures

Up to this point, we have used only actual data in the analysis. Now we expand the analysis to use
both predictions and actual data but only for the seven OIs where we could make predictions. Using the
Schneidewind Model [1], [9], [16], [17], 18] and the SMERFS software reliability tool [4], we show
prediction equations, using 30 day time intervals, and make predictions for OIA, OIB, OIC, OID, OIE,
OIJ, and OIO. This model or any other applicable model may be used [1], [4].

To predict Total Failures in the range [1,4] (i.e., failures over the life of the software), we use

equation (4):

F (∞)=α/β+Xs-1 (4)

where the terms are defined as follows:
s: starting time interval for using failures counts for computing parameters α and β ,
α: initial failure rate,
β: rate of change of failure rate, and
Xs-1:observed failure count in the range [1,s-1].

Now, we predict Total Failures normalized by KLOC Change in Code. We want predicted

normalized Total Failures to show a decreasing trend across releases. We computed a CM value for this
data of .115, with a standard deviation of .271, indicating stability with respect to predicted normalized
Total Failures.

Remaining Failures

To predict Remaining Failures r(t) at time t, we use equation (5) [1], [9], [17]:

r(t)=F(∞)-Xt (5)

This is the predicted Total Failures over the life of the software minus the observed failure count at time t.

 12

We predict Remaining Failures, normalize them by KLOC Change in Code, and compare them with
normalized actual Remaining Failures for seven OIs in Figure 4. We approximate Actual Remaining
Failures at time t by subtracting the observed failure count at time t from the observed Total Failure count
at time T, where T >>t. The reason for this approach is that we are approximating the failure count over
the life of the software by using the failure count at time T. We want equation (5) and actual Remaining
Failures, normalized by KLOC Change in Code, to show a decreasing trend over a sequence of releases.
The CM values for these plots are 0.107 and 0.277, respectively, indicating stability with respect to
Remaining Failures. The corresponding standard deviations are .617 and 715.

Time to Next Failure

To predict the Time for the Next Ft Failures to occur, when the current time is t, we use equation (6)

[1], [16], [17].

The terms in TF(t) have the following definitions:
t: Current time interval;
Xs,t: Observed failure count in the range [s,t]; and
Ft: Given number of failures to occur after interval t (e.g., one failure).

We want equation (6) to show an increasing trend over a sequence of releases. Predicted and actual

values are plotted for six OIs (OIO has no failures) in Figure 5. The CM values for these plots are -0.152
and -0.065, respectively, indicating slight instability with respect to Time to Next Failure. The
corresponding standard deviations are .693 and .630.

We predicted values of Total Failures, Remaining Failures, and Time to Next Failure as indicators of

the risk of operating software in the future: is the predicted future reliability of software an acceptable
risk? The risk to the mission may or may be not be acceptable. If the latter, we take action to improve the
maintained product or the maintenance process. We use actual values to measure the reliability of
software and the risk of deploying it resulting from maintenance actions.

Summary

We summarize change metric values in Table 3. Overall (i.e., average CM), the values indicate

marginal stability. If the majority of the results and the average CM were negative, this would be an alert
to investigate the cause. The results could be caused by: 1) greater functionality and complexity in the
software over a sequence of releases, 2) a maintenance process that needs to be improved, or 3) a
combination of these causes.

 1)s+(t]/))])F+X(/([(log[=(t)T tts,F −−ββ−αα (6)

 13

Table 3: Change Metric Summary

Metric Actual Predicted
Mean Time To Failure -0.060
Total Test Time per KLOC 0.116
Total Failures per KLOC 0.087 0.115
Remaining Failures per KLOC 0.277 0.107
Time to Next Failure -0.065 -0.152
Average 0.071

METRICS FOR LONG-TERM AND SHORT-TERM ANALYSIS

In addition to the long-term maintenance criteria, it is desirable that the maintenance effort results in

increasing reliability within each release or OI. One way to evaluate how well we achieve this goal is to
predict and observe the amount of test time that is required to reach a specified number of Remaining
Failures. In addition, we want the test effort to be efficient in finding residual faults for a given OI.
Furthermore, number of Remaining Failures serves as an indicator of the risk involved in using the
maintained software (i.e., a high value of Remaining Failures portends a significant number of residual
faults in the code). In the analysis that follows we use predictions and actual data for a selected OI to
illustrate the process: OID.

Total Test Time Required for Specified Remaining Failures

We predict the Total Test Time that is required to achieve a specified number of Remaining Failures,
r(tt), at time tt ,, by equation (7) [1], [17]:

We plot predicted and actual Total Test Time for OID in Figure 6 against given number of Remaining

Failures. The two plots have similar shapes and show the typical asymptotic characteristic of reliability
(e.g., Remaining Failures) versus Total Test Time. These plots indicate the possibility of big gains in
reliability in the early part of testing; eventually the gains become marginal as testing continues. The
figure also shows how risk is reduced with a decrease in Remaining Failures that is accomplished with
increased testing. Predicted values are used to gauge how much maintenance test effort would be required
to achieve desired reliability goals and whether the predicted amount of Total Test Time is technically and
economically feasible. We use actual values to judge whether the maintenance test effort has been
efficient in relation to the achieved reliability.

Failure Rate

In the short-term (i.e., within a release), we want the Failure Rate (1/MTTF) of an OI to decrease over an
OI's Total Test Time, indicating increasing reliability. Practically, we would look for a decreasing trend,
after an initial period of instability (i.e., increasing rate as personnel learn how to maintain new software). In
addition, we use various shape metrics, as defined previously, to see how quickly we can achieve reliability

1)(s+/)])]]t[r(/([log[=t tt −ββα (7)

 14

growth with respect to test time expended. Furthermore, Failure Rate is an indicator of the risk involved in
using the maintained software (i.e., an increasing failure rate indicates an increasing probability of failure
with increasing use of the software).

Failure Rate = Total Number of Failures During Test/Total Test Time (8)

We plot Equation (8) for OID in Figure 7 against Total Test Time since the release of OID. Figure 7 does
show that short-term stability is achieved (i.e., failure rate asymptotically approaches zero with increasing
Total Test Time). In addition, this curve shows when the failure rate transitions from unstable (positive
Failure Rate) to stable (negative Failure Rate). The figure also shows how risk is reduced with decreasing
Failure Rate as the maintenance process stabilizes. Furthermore, in Figure 8 we plot the rate of change (i.e.,
slope) of the Failure Rate of Figure 7. This curve shows the percent of Total Test Time when the rate of
change of Failure Rate reaches its maximum negative value. We use these plots to assess whether we have
achieved short-term stability in the maintenance process (i.e., whether Failure Rate decreases asymptotically
with increasing Total Test Time). If we obtain contrary results, this would be an alert to investigate whether
this is caused by: 1) greater functionality and complexity of the OI as it is being maintained, 2) a
maintenance process that needs to be improved, or 3) a combination of these causes.

Another way of looking at failure rate with respect to stability and risk is the annotated Failure Rate of

OID shown in Figure 9, where we show both the actual and predicted Failure Rates. We use equations (8)
and (9) [1] to compute the actual and predicted Failure Rates, respectively, where i is a vector of time
intervals for i≥s in equation (9).

f(i) = α(EXP(-β(i-s+1))) (9)

A 30-day interval has been found to be convenient as a unit of Shuttle test time because testing can last

for many months or even years. Thus this is the unit used in Figure 9, where we show the following events in
intervals, where the predictions were made at 12.73 intervals:

Release time: 0 interval,
Launch time: 13.90 intervals,
Predicted time of maximum Failure Rate: 6.0 intervals,
Actual time of maximum Failure Rate: 7.43 intervals,
Predicted maximum Failure Rate: .5735 failures per interval, and
Actual maximum Failure Rate: .5381 failures per interval.

In Figure 9, stability is achieved after the maximum failure rate occurs. This is at i = s (i.e. i = 6 intervals)

for predictions because equation (9) assumes a monotonically decreasing failure rate, whereas the actual
failure rate increases, reaches a maximum at 7.43 intervals, and then decreases. Once stability is achieved,
risk decreases.

Summary

In addition to analyzing short-term stability with these metrics, we use them to analyze long-term
stability across releases. We show the results in Table 4 where the percent of Total Test Time to achieve
reliability growth goals is tabulated for a set of OIs, using actual failure data, and the Change Metrics are
computed. Overall, the values of CM indicate marginal instability. Interestingly, except for OID, the

 15

maximum negative rate of change of failure rate occurs when Failure Rate becomes stable, suggesting that
maximum reliability growth occurs when the maintenance process stabilizes.

Table 4: Percent of Total Test Time Required to Achieve Reliability Goals and Change Metrics (CM)

Operational
Increment

One
Remaining

Failure
(% Test Time)

Relative
Change

Stable
Failure Rate

(% Test Time)

Relative
Change

Maximum Failure
Rate Change
(% Test Time)

Relative
Change

A 77.01 76.99 76.99
B 64.11 0.168 64.11 0.167 64.11 0.167
C 32.36 0.495 10.07 0.843 10.07 0.843
D 84.56 -0.617 12.70 -0.207 22.76 -0.558
E 83.29 0.015 61.45 -0.793 61.45 -0.630
J 76.88 0.077 76.89 -0.201 76.89 -0.201
O 46.49 0.395 100.00 -0.231 100.00 -0.231
 CM 0.089 CM -0.070 CM -0.101
 STD DEV 0.392 STD DEV 0.543 STD DEV 0.544

SHUTTLE OPERATIONAL INCREMENT FUNCTIONALITY AND PROCESS
IMPROVEMENT

 Table 5 shows the major functions of each OI [12] along with the Release Date and KLOC Change
repeated from Table 1. There is a not a one-for-one relationship between KLOC Change and the
functionality of the change because, as stated earlier, KLOC is an indicator of maintenance actions, not
functionality. However, the software developer states that there has been increasing software functionality
and complexity with each OI, in some cases with less rather than more KLOC [8]. The focus of the early
OIs was on launch, orbit, and landing. Later OIs, as indicated in Table 5, built upon this baseline
functionality to add greater functionality in the form of MIR docking and the Global Positional System,
for example. Table 6 shows the process improvements that have been made over time on this project,
indicating continuous process improvement across releases.

 The stability analysis that was performed yielded mixed results: about half are favorable and half are
unfavorable. Some variability in the results may be due to gaps in the data caused by OIs that have
experienced insufficient failures to permit statistical analysis. Also, we note that the values of CM are
marginal for both the favorable and unfavorable cases. Although there is not pronounced stability neither
is there pronounced instability. If there were consistent and large negative values of CM, it would be
cause for alarm and would suggest the need to perform a thorough review of the process. This is not the
case for the Shuttle. We suspect but cannot prove that in the absence of the process improvements of
Table 6, the CM values would look much worse. It is very difficult to associate a specific product
improvement with a specific process improvement. A controlled experiment would be necessary to hold
all process factors constant and observe the one factor of interest and its influence on product quality. This
is infeasible to do in industrial organizations. However, we suggest that in the aggregate a series of
process improvements is beneficial for product quality and that a set of CM values can serve to highlight
possible process problems.

 16

Table 5: Shuttle Operational Increment Functionality

Operational
Increment

Release

Date

KLOC
Change

Operational Increment Function

A

9/1/83

8.0

Redesign of Main Engine Controller.

B

12/12/83

11.4

Payload Re-manifest Capabilities.

C

6/8/84

5.9

Crew Enhancements.

D

10/5/84

12.2

Experimental Orbit Autopilot. Enhanced Ground Checkout.

E

2/15/85

8.8

Western Test Range. Enhance Propellant Dumps.

F

12/17/85

6.6

Centaur.

G

6/5/87

6.3

Post 51-L (Challenger) Safety Changes.

H

10/13/88

7.0

System Improvements.

I

6/29/89

12.1

Abort Enhancements.

J

6/18/90

29.4

Extended Landing Sites. Trans-Atlantic Abort Code Co-
Residency.

K
5/21/91

21.3 Redesigned Abort Sequencer.
One Engine Auto Contingency Aborts.
Hardware Changes for New Orbiter.

L 6/15/92 34.4 Abort Enhancements.
M 7/15/93 24.0 On-Orbit Changes.
N 7/13/94 10.4 MIR Docking. On-Orbit Digital Autopilot Changes.
O 10/18/95 15.3 Three Engine Out Auto Contingency.
P 7/16/96 7.3 Performance Enhancements.
Q 3/5/97 11.0 Single Global Positioning System.

 17

Table 6: Chronology of Process Improvements
Year in which Process

Improvement Introduced Process Improvement

1976 Structured Flows

1977 Formal Software Inspections

1978 Formal Inspection Moderators

1980 Formalized Configuration Control

1981 Inspection Improvements

1982 Configuration Management Database

1983 Oversight Analyses

1984
Build Automation
Formalized Requirements Analysis

1985
Quarterly Quality Reviews
Prototyping

1986
Inspection Improvements
Formal Requirements Inspections

1987 Process Applied to Support Software

1988
Reconfiguration Certification
Reliability Modeling and Prediction

1989 Process Maturity Measurements

1990 Formalized Training

1992 Software Metrics

CONCLUSIONS

As stated in the Introduction, our emphasis in this paper was to propose a unified product and process
measurement model for both product evaluation and process stability analysis. We were less interested in
the results of the Shuttle stability analysis, which were used to illustrate the model concepts. We
conclude, based on both predictive and retrospective use of reliability, risk, and test metrics, that it is
feasible to measure and assess both product quality and the stability of a maintenance process. The model
is not domain specific. Different organizations may obtain different numerical results and trends than the
ones we obtained for the Shuttle.

 18

Acknowledgments

We acknowledge the support provided for this project by Dr. William Farr, Naval Surface Warfare
Center; Mr. Ted Keller of IBM; and Ms. Patti Thornton and Ms. Julie Barnard of United Space Alliance.
We also wish to thank the anonymous reviewers for their helpful comments.

References

[1] Recommended Practice for Software Reliability, R-013-1992, American National Standards
Institute/American Institute of Aeronautics and Astronautics, 370 L'Enfant Promenade, SW, Washington,
DC 20024, 1993.

[2] C. Billings, et al, "Journey to a Mature Software Process", IBM Systems Journal, Vol. 33, No. 1, 1994,
pp. 46-61.

[3] Lionel C. Briand, Victor R. Basili, and Yong-Mi Kim, "Change Analysis Process to Characterize
Software Maintenance Projects", Proceedings of the International Conference on Software Maintenance,
Victoria, British Columbia, Canada, September 19-23, 1994, pp. 38-49.

[4] William H. Farr and Oliver D. Smith, Statistical Modeling and Estimation of Reliability Functions for
Software (SMERFS) Users Guide, NAVSWC TR-84-373, Revision 3, Naval Surface Weapons Center,
Revised September 1993.

[5] David Gefen and Scott L. Schneberger, The Non-Homogeneous Maintenance Periods: A Case Study
of Software Modifications", Proceedings of the International Conference on Software Maintenance,
Monterey, California, November 4-8, 1996, pp. 134-141.

[6] Joel Henry, Sallie Henry, Dennis Kafura, and Lance Matheson, "Improving Software Maintenance at
Martin Marietta", IEEE Software, Vol. 11, No.4, July 1994, pp. 67-75.

[7] Craig Hollenbach, et al, “Combining Quality and Software Improvement”, Communications of the
ACM, Vol. 40, No.6, June 1997, pp. 41-45.

[8] Private communication with Ted Keller, IBM, April 1998.

[9] Ted Keller, Norman F. Schneidewind, and Patti A. Thornton "Predictions for Increasing Confidence in
the Reliability of the Space Shuttle Flight Software", Proceedings of the AIAA Computing in Aerospace
10, San Antonio, TX, March 28, 1995, pp. 1-8.

[10] Taghi M. Khoshgoftaar, Edward B. Allen, Robert Halstead, and Gary P. Trio, "Detection of Fault-
Prone Software Modules During a Spiral Life Cycle", Proceedings of the International Conference on
Software Maintenance, Monterey, California, November 4-8, 1996, pp. 69-76.

[11] Meir M. Lehman, “Programs, Life Cycles, and Laws of Software Evolution”, Proceedings of the
IEEE, Vol. 68, No. 9, September 1980.

[12] “Software Release Schedules”, Lockheed Martin, January 30, 1998.

 19

[13] Troy Pearse and Paul Oman, "Maintainability Measurements on Industrial Source Code Maintenance
Activities", Proceedings of the International Conference on Software Maintenance, Opio (Nice), France,
October 17-20, 1995, pp. 295-303.

[14] Thomas M. Pigoski and Lauren E. Nelson, "Software Maintenance Metrics: A Case Study",
Proceedings of the International Conference on Software Maintenance, Victoria, British Columbia,
Canada, September 19-23, 1994, pp. 392-401.

[15] Norman F. Schneidewind, "Measuring and Evaluating Maintenance Process Using Reliability, Risk,
and Test Metrics", Proceedings of the International Conference on Software Maintenance, Bari, Italy,
October 2, 1997, pp. 232-239.

[16] Norman F. Schneidewind, "Reliability Modeling for Safety Critical Software", IEEE Transactions on
Reliability, Vol. 46, No.1, March 1997, pp.88-98.

[17] Norman F. Schneidewind, "Software Reliability Model with Optimal Selection of Failure Data",
IEEE Transactions on Software Engineering, Vol. 19, No. 11, November 1993, pp. 1095-1104.

[18] Norman F. Schneidewind and T. W. Keller, "Application of Reliability Models to the Space Shuttle",
IEEE Software, Vol. 9, No. 4, July 1992 pp. 28-33.

[19] Harry Sneed, "Modelling the Maintenance Process at Zurich Life Insurance", Proceedings of the
International Conference on Software Maintenance, Monterey, California, November 4-8, 1996, pp. 217-
226.

[20] George E. Stark, "Measurements for Managing Software Maintenance", Proceedings of the
International Conference on Software Maintenance, Monterey, California, November 4-8, 1996, pp. 152-
161.

Dr. Norman F. Schneidewind is Professor of Information Sciences and Director of the Software Metrics
Research Center at the Naval Postgraduate School. He is the developer of the Schneidewind software
reliability model that has been used by NASA to assist in the prediction of software reliability of the
Space Shuttle -- one of the models recommended by the American National Standards Institute and the
American Institute of Aeronautics and Astronautics Recommended Practice for Software Reliability. Dr.
Schneidewind is a Fellow of the IEEE, elected for "contributions to software measurement models in
reliability and metrics, and for leadership in advancing the field of software maintenance". In 1992 and
1998 he received an award for outstanding research achievements by the Naval Postgraduate School. In
1993 he received the IEEE Computer Society's Outstanding Contribution Award "for work leading to the
establishment of IEEE Standard 1061-1992". In addition, he received the IEEE Computer Society
Meritorious Service Award "for his long-term committed work in advancing the cause of software
engineering standards". He was recognized for his contributions to the IEEE Computer Society by being
named to the "Golden Core" of volunteers.

 20

Figure 2. Total Failures per KLOC Across Releases

Months Since Release of First OI
0 3.4 9.27 13.17 17.5 81.6 145.6

0

0.5

1

1.5

2

 OI A B C D E J O

Figure 4. Reliability of Maintained Software -- Remaining Failures
Normalized by Change to Code

Months Since Release of First OI
0 3.4 9.27 13.17 17.5 81.6 145.6

0

0.2

0.4

0.6

0.8

1

Predicted Actual

 OI A B C D E J O

OI A B C D E J O

Figure 3 . To ta l Tes t T ime per KLOC Across Re leases

Months Since Release of F i rs t OI
0 3.4 9 . 3 13.2 17.5 27.6 45.2 61.4 7 0 81.6 92.1 105.5 118.5 130.4 145.6 154.5167.1

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

OI A B C D E F G H I J K L M N O P Q

 21

Figure 5. Reliability of Maintained Software -- Time to Next Failure

Predicted (Y1) Actual (Y2)

Months Since Release of First OI
0 3.4 9.27 13.17 17.5 81.6

0

5

10

15

20

 OI A B C D E J

Figure 7. OID Failure Rate

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

5.9 6.29 7.41 9.67 12.7 16.56 22.76 30.82 58.73 75.77 84.57 100

Percent of Total Test Time

Stable

Unstable

Decreasing Risk

Figure 8. OID Rate of Change of Failure Rate

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

6 13 20 27 34 41 48 55 62 69 76 83 90 97

Percent of Total Test Time

Stable When Negative

0 1 2 3 4 5 6

0

20

40

60

80

Actual

Predicted

Number of Remaining Failures

Figure 6. Total Test Time to Achieve Remaining Failures

Operational Increment OID

Decreasing Risk

 22

0 10 20 30 40 50 60 70 80

Total Test Time (30 Day Intervals)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fa
ilu

re
 R

at
e

(F
ai

lu
re

s p
er

 3
0

D
ay

 In
te

rv
al

)
Figure 9. OID Failure Rate

Predicted Versus Actual Actual

Predicted

Launch
Stable

Decreasing Risk

